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plate flow. The results of computations of the dependences vw0 -- p are presented in Fig. 4 
for the values ~ < ~K (~ = 0.1, 0.2, 0.25, 0.3 are the lines I-4). 

One interesting feature of the solutions obtained for viscoDlastic deformation problems 
should be noted in the case of a linear function ~. The linear dependence of the character- 
istic rates of deflection on the load (2.5), (2.7) is sufficiently regular for all plates in 
the presence of one flow mode, however, an analogous dependence in the presence of several 
zones with moving boundaries is somewhat unexpected. Nevertheless, despite the awkwardness 
of the analysis, the deviations from the linear dependence are not large in all cases for the 
known solutions (see [I, 2, 4-6], Figs. 3 and 4), and are remarked only in the domain of load 
values near the static limit load. For instance, for a circular plate loaded by uniform pres- 
sure [4], the deviations from the linear dependence in the whole range of displacement rates 
do not exceed I% of the static limit load. 
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INVERSE PROBLEM OF ~MBRANE DEFORMATION UNDER CREEP CONDITIONS 

I. Yu. Tsvelodub UDC 539.376 

1. Inverse problems of membrane deformation under creep conditions in a given time in 
a convex surface for minimal energy expenditures occur, for instance, in analyzing technologi- 
cal equipment for pressure treatment of materials in the creep regime [1]. 

Let us consider a membrane occupying a domain S in the xiOx2 plane that is bounded by 
the outline y and is being deformed under the action of external forces q normal to its plane 
and Pk (k = I, 2) applied to u and lying in its plane. The equilibrium equations have the 
form [2] 

a.~.--~ = 0 (~ = l ,  2),  h % z  a.~hax z = - -  q, ( 1 .  1 ) 

where  Ok7 (k ,  ~ = 1, 2) a r e  s t r e s s  t e n s o r  c o m p o n e n t s ,  h i s  t h e  membrane  t h i c k n e s s ,  and  w i s  
its deflection. Summation from I to 2 is over the repeated subscripts. 

The strain tensor components Sk~ (k, 7 = I, 2) are related to the displacement compo- 
nents Uk (k = I, 2) in the xlOx 2 plane and the deflection w by the following dependences [2]: 

Novosibirsk. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 5, 
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1 [ auh a ~ h \  ~ aw" a,~ ( 1 . 2 )  
~z  = - - 2  Ox~ + 0,,:~ ,Jr 2 0.D~ 0.,,~ (l,:, l =  I, 2). 

We c o n s i d e r  t h a t  t h e  t o t a l  s t r a i n s  o f  t h e  membrane m a t e r i a l  a r e  c o m p r i s e d  o f  e l a s t i c  
s t r a i n s  s u b j e c t  t o  H o o k e ' s  law and c r e e p  s t r a i n "  

~,~ = % ~ , , o ~ , ' +  ~,~;~ (~:, t= -  ~, ' ) ,  ( I . 3 )  
~ c where the creep strain rates qkl = ~kl (The dot denotes differentiation with respect to the 

time t) are potential stress functions 

%t - a%t (~., I. ..... 1 , 2 ) ,  ( 1 . 4 )  

where ~ = r is the creep potential that is a convex homogeneous function of degree n + 1 
i n  Okl  ( k ,  1 = 1, 2) [ 3 ] .  The f u n c t i o n  r = [ 1 / ( n  + 1) ]W,  where W = O k l n k l  i s  the  s p e c i f i c  
power of the energy dissipated during creep which implies the convexity of the functions 
W = W(r ) and W = W(qkl) [3], for any two states the following inequality holds [4] 

,, n 4-1 

Let us formulate the inverse problem whose investigation is the purpose of this paper: 
What external forces q = q(xz, x2, t) and Pk = Pk( s, t) (k = I, 2), where s is the arclength 
of the contour u 0 ~< t < t,, must be applied to a membrane which is in the natural unstrained 
state at t < 0 such that given values of residual deflections w, = w,(xz, x2) would be ob- 
tained at t = t, after their instantaneous removal and corresponding elastic unloading, and 
such that the work of these forces expended in deforming the membrane would be minimal? In 
other words, among all possible loading paths resulting in a given residual surface shape of 
an initially flat membrane in a given time t,, the optimal path in the sense of energy expen- 
diture must be selected. 

We consider the given surface to be convex , i.e., 

{ (1.6) <o,  \ ] > ~  

and also that w, = u~ = 0 (k = I, 2) on X, where u~ are residual displacements in the plane of 

of the membrane. 

It can be shown that the creep strain components are compatible for t = t,, i.e., rela- 
tionships of the type of (1.2) are expressible in terms of u~ (k = 1, 2) and w,. In fact, 
after unloading the field of residual stresses O~l and residual deflection w, should satisfy 
a system of equations of the form (1.1) for t = t,, in which we should set q = 0 [5]. If the 
residual stress function F, = F,(xz, x2) is introduced in the usual manner such that the first 
two equations in (1.1) are satisfied identically, then the third equation in (1.1) will take 

the form 

O~lo, ~921,', ~u,,  0SF, a2w, 0"F ,  
a,~,:~ a~:---~~ - z ~ o ~ , . .  a.~ox~ + ~,~- Ox~.2 = o. (~ 7) 

Since p~ = 0 (k = I, 2) on X for t = t,, then the boundary conditions for F, canbe reduced 
to the form [6] SF,/3Xk = 0 (k = I, 2) or F, = 3F,/3n = 0 on y. By virtue of (1.6), the equa- 
tion (1.7) for the function F, = F,(xl, x2) is elliptic [7] and on the basis of the boundary 
conditions mentioned has the unique solution F, = 0, from which d~l = 0 (k, 1 = I, 2). 

There results from (1.2) and (1.3) 

c , " - - - ,  ~ {8u'  , au z'~ I. ow, am, (k, t = l , 2 ) .  ( 1 . 8 )  
. 

Let us now calculate the work A expended by the forces q and Pk (k = I, 2) in membrane 
deformation under the assumption that w = 0 on y during the whole process, i.e., for 0 <~ t 

t,. We have 

A = I 1 +  ".,' I i = f  ~ qdwdxldx'~" I,~ = [ [ phd%ds. 
8 0  Y O  
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By virtue of (I .I) and the known Green's formula that reduces integration over the domain S 
to integration over the contour y, we can obtain 

i1 _hI~O[ 0~) , . OY)  , ~ nl dwds j -  Ia, 
S O  ~ 0  

S 

where n k (k = I, 2) are components of the external unit normal vector to u Because of the 
boundary conditions for w the first integral in the last equality vanishes; therefore, A = 
I3 + 12. 

It is easy to see that the quantity A equals the work of the stress Ok~ on the strain 

ek7 in the whole membrane volume, i.e., A:hf~hldshldxldx~ , from which, by virtue of (|.3) and 
SO 

f~ 

the equalities o~l = 0 (k, I = ~, 2), we obtain A=h[~Wdtdxldx2 , ,  W=ffhlilhl. 
8 O 

Let us prove the following assertion: The optimal loading path (in the above-mentioned 
sense) is that for which the stress components at each point of the membrane are independent 
of the time. Such a stress field, if it exists, is uniquely defined. 

We assume that such a path exists; all the quantities referring to it will be denoted 
with the subscript 0. Then for any other loading, assuringthe given residual deflection 
w, = w,(xl, xe) after unloading at t = t,, we have 

l *  f ,  

A - - A  o = a ( iv  - -  wo) d td~d~  2 m h "  

S O  ~ 0  . 

s s ( 1 . 9 )  

n . - -  - - - ~  PhoAUl~ds = O. (1 . 9 )  
S ? 

I n  ( 1 . 9 )  we u s e d  t h e  i n e q u a l i t y  ( 1 . 5 ) ,  t h e  c o n d i t i o n  o f  i n d e p e n d e n c e  o f  ok~ 0 f r o m  t ,  

[ &~,, o,o, ~ 
the relationships (I.8) in which w, = w,(xl, xi) is the given function, i.e., A~#-~h 0h7= 0 

(k, I = I, 2), the Green's formula, and the boundary conditions for the residual displace- 
ments u~. The symbol A denotes the difference between appropriate quantities referring to 
the loading paths under consideration. Therefore, A0 ~< A, which proves the first part of the 
assertion. 

The proof of the second part is analogous to the proof of the uniqueness theorem for 
steady creep problems [8]. Indeed, ~(t,) = qklt, (k, ~ = I, 2) follows from (1.4) and we 
obtain from (1.5) by interchanging the roles of the first and second states and combining 
the inequality obtained with (1.5) 

- s , l - - w a ,  A % l =  (1 tO) "lh l " 

The inequality (1.10) expresses the known Drucker postulate for viscous strain [8]. As- 
suming the existence of two solutions corresponding to the very same residual deflection w, 
and satisfying the zero boundary conditions for u k (k = I, 2) with time-independent stress 
fields and performing calculations analogous to those used in (1.9), we find 

h, f ,Ao's~t,'\l~',~+.t (t,)dxl"dx~ :-. ht, .! AaA.ZA rl,~ldxldx,z =: O, 
S s 

which is possible, by virtue of (1.10), if and only if Aak~ = 0 (k, ~ = l, 2) in the whole 
volume of the membrane since the expression AokTAqk Z is a positive definite quadratic form 
in Aok7 (k, Z = I, 2) [8]. The assertion is proved. 
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The contour loads for a known stress field Okl are determined by the dependences Pk = 
hOk/n I (k = I, 2) on T. It is seen from (1.1)that w = w(xl, xi, t) (0 ~ t < t,) must be 
determined to find the transverse loads q = q(xl, xi, t). Eliminating the quantity u k (k = 
I, 2) from (1.2) and taking into account that the creep strain rate qkl (k, l = I, 2) is in- 

.c t C  dependent of t, i.e., ~iLl(t)=~-, 81~z(t.), by using the relationships (1.3) and (1.8) we obtain the 

following equality at any time t (0 ~ t < t,) 

( 1 :.:. ,I( 

which is the strain compatibility equation [2] for this case. It was assumed for simplicity 
in the derivation of (1.11) that the membrane material is isotropic, where E is Young's modu- 
lus, F is a stress function corresponding to the field Okl, and AA is the biharmonic operator. 

The relationship (1.11) is a Monge--Ampere equation in the unknown deflection w. Its 
Dirichlet problem with the above-mentioned boundary condition w = 0 on X has a unique solu- 
tion, at least for a negative right side (The other solution differs just by a sign) [7]. 

If the time t, is sufficiently large, then the components of the stress Okl will evi- 
dently be small quantities; consequently, the elastic strains (constant in time) can be ne- 
glected in comparison with the developed creep strains, i.e., the steady creep scheme can 
be used [3]. Then the first term in the right side of (1.11) can be omitted, and the el- 
lipticity condition for this equation can be satisfied by taking account of (].6), implying 
the uniqueness (to the accuracy of a sign) of its solution [7]. In this case, evidently w = 

/t-~w,. 

2. Let us consider a rectangular membrane with the sides 2a and 2b, a/b = ~ < 1. Let 
us select the origin at the center of the membrane, and let us denote the axes by x and y so 
that the domain S is determined by the inequalities Ixl ~ a, lyl < b. Let us determine the 
optimal stress field Okl (constant in time) of which we spoke above, for this case. As the 

potential ~ we take the standard [3] from (1.4): O=n--~-i_ i , = :. 

is the intensity of the stress B, n are constants, n > 1. 

Let us introduce the dimensionless coordinates i = x/a, ~ = y/bl the displacements 5 = 
u/a, ~ = v/a, and the deflection ~ = w/a in the xOy plane, later discarding the tilde symbol 

above the dimensionless quantities so that the domain S will be defined by the inequalities 

Ixl ~ 1, ly l  ~ 1. 

To solve the problem, we apply the method of perturbations [9] by selecting the quantity 
as small parameter. We shall assume that the given residual deflection w, = w,(x, y) de- 

pends only on the dimensionless coordinates and does not contain the parameter e, where w,(• 
y) = w,(x, • = 0. For simplicity we consider that w, is an even function in both the vari- 
ables, i.e., w,(x, y) = w,(--x, y) = w,(x, --y), The residual displacements u, and v, satisfy 
the zero boundary conditions, i.e., u, = v, = 0 for x = • and y = • We later omit the 

asterisk subscript , on the quantities w,, u,, and v~. 

Under the assumptions made for the creep strain components for t = t,, we obtain from 

(1.4) and (1.8) 

~ (t,) = ~ + 2 ~o.:.l = T %.)' 

% ( t , ) = e . ~ = T ~ b 7  / - -B t :~  % z 

k ~ " ~ )  + z a,,:~. ":~ ~%~" 

The first two equilibrium equations in (1.1) take the form 

Oo~]Ox + ~0o~,/0~ : O, Oo~/O.~+ ~0%/@ = O. ( 2 . 2 )  

Using the usual method [9], we represent the magnitudes of the displacements and stresses 
in the form of power series in e and then isolating terms with identical powers in (2.1) and 

(2.2). Thus, we have for the zeroth approximation 

l t { m ~  ~ 
~ = Bt*~:;-~ (('~o ---f-- %" ) ---Z \o--c ] ,~ 
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!Jv_.j : = .  , " ~ l -  1 , ~  O ( l x o  O(f'rY~ - -  O.  
Ox 3Bl*~ "'xyo' dx: O,r 

We use the boundary conditions for the variable x, i . e . , u o l x = _ i l =  vol~==.!_l= O, 
s y s t e m  ( 2 . 3 ) .  C o n s e q u e n t l y ,  i t  i s  n o t  d i f f i c u l t  t o  o b t a i n  

Evenness of the function 

ow,'oxl~=ii= O, from which ",It~=:!i= 0 . Therefore, the solution (2.4) of 

zeroth approximation satisfies all the boundary conditions. 

We have the system of first approximation conditions from (2. I) 

Ox --Bt* T o ~  . ~  x ~  ~Vl ' 

av~ ((~vl -U ~:1 1 (~ 

0,:, 0% (~/2~ ) '-~ Om Ow 
O"--x' @', ~ : 3Bt ,  - -  ~o r Ox Of 

(~Gxl , O(Yxyo Off xyl  O(tyo 
o~ . - - - ~ -  __ o, <-77Z + --DT - o. 

to solve the 

Oxti : (70' (YYO := 2 O' (liO ~ 00' 

r t _L /_ .~ , l , ,+~  k/~),,,\~ Ik 
% : L 2Bt, t .V-~ ] . J t-~-T ) dx J , ( 2 .4 )  

o 

x 

Uo : @,, ---2. \Ox/ fox/ 
O 0 

w = w ( x ,  y )  i s  u s e d  i n  ( 2 . 4 ) .  B e c a u s e  w ( x ,  21) = 0 ,  we o b t a i n  
t h e  s y s t e m  ( 2 . 3 )  f o r  t h e  

ary 

and (2.2) : 

(2.5) 

The solution of the system (2.5) with the boundary conditions U~lx.=i l =  vslx=:~ l :  0: is 

x #G 0 
~lx l :~y l :O '  (lxv'---- 2 Og'. tt z :O ,  

, , ~ Ox 2 , =  ; + x  ) - -dx  

(2.6) 

The equalities (2.4) were used in (2.6). It is seen that v11v=li= 0 , i.e., all the bound- 
conditions are satisfied even for the first approximation. 

We obtain the system of second approximation equations from (2.1) and (2.2): 

o% [-I/~i '~ , , - 2  t , - l o2 ~ . 
OX .... B t * t - - Z -  j (~o {~0 (~X2- - '~ (~y2  -~ ~ XiJT( lYi - - '2(~Xl(Yyl -~3(~Xyl  ' 

( 2 .7 )  ,% a,,, (~) , , - ,  
a.-v + ~ = 3~t, "~'- ~{<'o",~. + ('~ - i! , ,~ ,%,1,  

8Ox2/O,L' ~- O(5Xyt/O y --~ O, O():x.y2f 7d: -~ r~dVi./Oy : :  O. 

The solution of the system (2.7) satisfying the boundary conditions 

x ~ 0"(' o ~ n+l ~1 dx-q)2 ' 
fix2-- 4 ap 2 #zo o 

o 

i~y,~==4t.T:c2+ i [ 2 ~,,-I <['1 

- :  <, , . , , , -  } <,o <..,=o. ~'~ - -  , ' 7  -=7- T 

0 t l  

u21x=+1=v21~=-I = 0 is 
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o q  , 1 f o w U  _ ,% o ~  + , ._  
e ,  =-a-b- ~ g \ ~ J  ' % t~ o,s~ ~; ~.-aTl 

(2.8) 

The following remark must be made with respect to the solution obtained above for the 
first approximation. As is seen from (2.4), O01y=+1 = 0 which can result in infinite stresses 
Oxyl, Ox2, and Oy2 for y = +I. In turn this imposed definite constraints on the applicability 

2 -- �9 of (2.6) and (.8) 

For instance, let w = e(1 -- y2)PQ(x), where ~, p are constants and Q(+I) = 0. For the 
quantities ~ko0/~y k (k = I, 2,...) that will be in the expressions for the higher order ap- 
proximations of the stresses to be finite, it is necessary that 2p/n be a natural number. 
Thus, p ~> n follows from the condition of boundedness of the stresses ~ Ox2, and Oy2 for 
y = +I. In this case uz(x, +I) = 0, i.e., all the boundary conditions are satisfied for the 
second approximation also. 

Let us consider an example: n = 3, w = ~(I- y2)3(I --x 2 We find from (2.4), (2.6), 

and (2.8) 
1 

% ~ (1 y~.)2+ 2 �9 137"2+11] 4__( ~ a 

((t--.~)~ , ~.[9 , .;  1526a~1 ~ - 671]} 
% = I~ \ - - T - -  * ~ I.-g- *~ (Tu~ + 0 - T (ts.~y ~ - l) + ggff - , 

u=__2 ~z~(t y~)~(z--x a) (t--/j~")~+g-O-t9x"(Ty2+ 1)-- 1087~ -t-791 , a 

( - v = - =2~ (i - x ~) .2 + y (i ~ 5 
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